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Surface & Interface Science Today
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Impact in Energy
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Impact in Environmental Science
Contamination and Migration at the Hanford Site

laghibid Shi: Locstion MG From: Molecular Environmental Science: An
Assessment of Research Accomplishments, Available
Synchrotron Radiation Facilities, and Needs, by G. E.
Brown, Jr. et al., 2003
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Impact today and tomorrow

Scaling Challenges
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Workshop at APS

Workshop on In-Situ Characterization of Surface & Interface
Structures and Processes

September 8-9, 2005 Advanced Photon Source Argonne National Laboratory,
Argonne, Illinois 60439
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Workshop on In-Situ Characterization of Surface & Interface Structures ‘

and Processes
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Workshop on In-Situ Characterization of Surface & Interface Structures ‘
and Processes
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Workshop Recommendations ‘

Provide state of the art beamline facilities and infrastructure to
support current forefront research efforts, and expand facilities to
enable anticipated new opportunities.

Increase the number of XOR staff scientists whose research
encompasses the area of surface and interface scattering.

Establish a formal mechanism to get the advice and
recommendations of the research community in the development
of these research facilities.

Encourage and support user community efforts to develop a
proposal for a greenfield facility for materials creation,
processing, and in-situ surface and interface and
characterization.

Develop suitable access modes and policies to encourage strong in-
situ characterization and processing programs.

k Enable access to other capabilities at ANL.



X-ray Reflection Interface Microscopy (XRIM)
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Characteristics:

— Strong contrast at defects (~100%), but weak reflected beam intensity (R < 10-°)
I — Sub-nm vertical sensitivity, but modest lateral resolution (200 nm to date),

*P. Fenter, C. Park, Z. Zhang, and S. Wang, in review (2006)




Observation of Step Distributions with XRIM

Step distributions on orthoclase (001) AFM of orthoclase, KAISi,Og (001)
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Step Identification with Phase Contrast

Step distributions on orthoclase (001) Identification of step height:
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New Opportunities with XRIM

A new capability combining:
- exquisite structural sensitivity derived from interfacial X-ray scattering
- high spatial resolution derived from X-ray microscopy

A non-invasive structural tool (no probe tip):
- reactions in aggressive chemical conditions (extreme pH, corrosive gases)
- elevated temperature
- buried interfaces

In-situ, real-time observations of interfacial reactions:

- geochemical reactions at solid-liquid interfaces
dissolution
heterogeneous growth
nucleation site distribution (terrace vs. step)
phase determination (e.g., calcite vs. aragonite for CaCQO,)
nano-particle hetero-epitaxy

- materials growth (MOCVD, MBE, oxides)
- corrosion and oxidation

- ferroelectric domain switching

- magnetic domain structures



Time-resolved Growth — Pulsed Laser Deposition (PLD)
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Self-similarity in Time Domain - Homoepitaxy STO
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Fast, non-equilibrium growth

B Most of the material moves 0.8
down a layer in first few us

B The obvious thermal
annealing only affects < 20%
of the material deposited.

B Traditional annealing models
miss most of the physics.

B Transverse length scale
depends upon Temperature
and the dwell time between
laser shots.
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Fast, non-equilibrium growth
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Need for In-Situ Facilities

B Many important scientific and technological problems can only be
solved by real-time, in situ analysis

B Solving these problems requires concentrated, dedicated, complex
experiments in a sophisticated facility

B The upgrade of the APS is a great opportunity to create a unique in
situ facility.




Considerations for In-Situ Capabilities at APS

B Synergistic location
— Co-locate techniques with complementary requirements

— High overhead experiments at end of line, easy to insert experiments
upstream

B Canted undulators
— Twice as many undulators per sector
— Synergistic location is difficult

B Multiplexed operation
— requires restricted operating ranges

B High density sectors
— Greatly increased number of beamlines
— Sector feeds dedicated facilities with enhanced capabilities

\



Concept for a High-Density Insertion Device Sector

W 4 — 5 straight sections for IDs (each 1 — 1.5 m long)

B Bend magnet source converted to ID (APSx3)

B Energy tunable beam lines

B Fixed and/or multiplexed beam lines (with optimized ID)
M Storage ring symmetry required

B Relaxation of the 1. nm-rad design goal ?

Energy
Tunable ID

B Li :
C S pixed Energy

ID Beam
k Lines




Compatible End-Station Capabilities

General Purpose o
Diffractometer Specialized System



New Opportunities in Surface and Interfacial Science ‘

B Surface and Interfacial structure is critical in many disciplines
and important materials systems

B XRIM and other imaging techniques will be integrated with other
traditional surface & interface scattering techniques to
revolutionize our understanding of buried interfaces

B Time-resolved growth investigations will permit understanding of
the earliest stages of non-equilibrium PLD growth, leading to
improved high-quality film growth

B An In-Situ Materials Creation, Processing, and Characterization
facility will enable new dedicated in-situ measurement
capabilities to extend knowledge in materials growth and
processing and impact diverse scientific areas ranging from
energy and communications to environmental and geochemical

| sciences
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